High Variability in Cellular Stoichiometry of Carbon, Nitrogen, and Phosphorus Within Classes of Marine Eukaryotic Phytoplankton Under Sufficient Nutrient Conditions
نویسندگان
چکیده
Citation: Garcia NS, Sexton J, Riggins T, Brown J, Lomas MW and Martiny AC (2018) High Variability in Cellular Stoichiometry of Carbon, Nitrogen, and Phosphorus Within Classes of Marine Eukaryotic Phytoplankton Under Sufficient Nutrient Conditions. Front. Microbiol. 9:543. doi: 10.3389/fmicb.2018.00543 High Variability in Cellular Stoichiometry of Carbon, Nitrogen, and Phosphorus Within Classes of Marine Eukaryotic Phytoplankton Under Sufficient Nutrient Conditions
منابع مشابه
The impact of temperature on marine phytoplankton resource allocation and metabolism
Marine phytoplankton are responsible for ∼50% of the CO2 that is fixed annually worldwide, and contribute massively to other biogeochemical cycles in the oceans1. Their contribution depends significantly on the interplay between dynamic environmental conditions and the metabolic responses that underpin resource allocation and hence biogeochemical cycling in the oceans. However, these complex en...
متن کاملA model for variable phytoplankton stoichiometry based on cell protein regulation
The elemental ratios of marine phytoplankton emerge from complex interactions between the biotic and abiotic components of the ocean, and reflect the plastic response of individuals to changes in their environment. The stoichiometry of phytoplankton is, thus, dynamic and dependent on the physiological state of the cell. We present a theoretical model for the dynamics of the carbon, nitrogen and...
متن کاملMagnitude of oceanic nitrogen fixation influenced by the nutrient uptake ratio of phytoplankton
The elemental stoichiometry of sea water and particulate organic matter is remarkably similar. This observation led Redfield to hypothesize that the oceanic ratio of nitrate to phosphate is controlled by the remineralization of phytoplankton biomass1. The Redfield ratio is used universally to quantitatively link the marine nitrogen and phosphorus cycles in numerous biogeochemical applications2–...
متن کاملStoichiometric regulation of phytoplankton toxins.
Ecological Stoichiometry theory predicts that the production, elemental structure and cellular content of biomolecules should depend on the relative availability of resources and the elemental composition of their producer organism. We review the extent to which carbon- and nitrogen-rich phytoplankton toxins are regulated by nutrient limitation and cellular stoichiometry. Consistent with theory...
متن کاملA simple nutrient-dependence mechanism for predicting the stoichiometry of marine ecosystems.
It is widely recognized that the stoichiometry of nutrient elements in phytoplankton varies within the ocean. However, there are many conflicting mechanistic explanations for this variability, and it is often ignored in global biogeochemical models and carbon cycle simulations. Here we show that globally distributed particulate P:C varies as a linear function of ambient phosphate concentrations...
متن کامل